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Abstract

We investigate the impact of the EU Emission Trading Scheme (EU ETS) policies on
oil market in this paper. Using a novel term structure model of oil and carbon futures,
we filter out factors specific to carbon markets and establish links to short-term and
long-term carbon policies. A horizon analysis of the carbon policies’ impacts on oil
supply and demand dynamics uncovers a “carbon policy paradox”: while short-term
carbon policies intend to curb fossil fuel use through temporary carbon market in-
tervention, they inadvertently lead to unintended consequences, including increased
oil supply and consumption. In contrast, long-term carbon policies that demonstrate
the EU ETS’s commitment to decarbonization are able to effectively reduce oil de-
pendence. Our findings highlight the divergent impacts of carbon policies on emission
reduction targets, underscoring the importance of policy horizon in achieving sustain-
able outcomes.
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1 Introduction

The looming threat of climate change presents the global community with unprecedented

challenges. As a result, climate-related risks, including physical risks and transition risks,1

have become a central topic among academics and practitioners (Stroebel and Wurgler,

2021). In an effort to achieve the goal of net zero carbon emissions by 2050,2 global policy-

makers have begun to implement emissions policies, such as cap-and-trade or carbon tax, to

reduce greenhouse gas (GHG) emissions.

In this context, the energy markets, the oil market in particular, are at the forefront of

transition risks. With the long-term objective of decarbonization, there are growing concerns

about whether fossil fuel resources may become stranded assets as carbon policies continue to

evolve (Van der Ploeg, 2016; Van der Ploeg and Rezai, 2020). In response to these policies,

oil market participants may adjust production, shift investments, or modify consumption

patterns to mitigate future risks and costs associated with carbon pricing, arguably lead-

ing to an unintended consequence called the “green paradox”: fossil fuel resource owners

may accelerate oil extraction, and increase oil production, which ultimately worsens global

warming. This context motivates our research question: How does carbon policy influence

the behavior of market participants in the oil market? By examining these interactions, we

aim to shed light on the broader implications of carbon policies for the dynamics of energy

markets.

In this paper, we focus primarily on the EU Emission Trading Scheme (EU ETS), which is

widely considered to be the pioneer of global carbon markets (Känzig, 2023). As the world’s

largest carbon market, covering approximately 40% of EU emissions, and with a long history

of development since 2005, the EU ETS provides a benchmark for carbon policies. The price
1Transition risks refer to the uncertainty associated with the process of decarbonization and the transition

to a low-carbon economy, while physical risks describe the increased exposure to climate hazards caused by
climate change. For a further discussion of climate-related risks, see Venturini (2022).

2The 21st Session of the Conference of the Parties (COP21) to the United Nations Framework Convention
on Climate Change adopted the Paris Agreement in 2015. The Agreement mandates the containment of
the global average temperature increase to well below 2◦C above preindustrial levels. To reach this goal,
numerous countries have committed to achieving net zero carbon emissions by 2050.
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of EU allowances (EUAs) is therefore a meaningful indicator of carbon policy exposure.

In addition to spot auction trading, futures contracts are also offered for EUAs, which

means that the term structure may also contain information about market expectations

and policy-related risks over different time horizons. Much like the Federal Reserve uses

various instruments of monetary policy, such as adjustments to federal funds rates and open

market operations, to influence the yield curve and achieve policy objectives, the EU ETS

employs both short-term and long-term policy instruments to stabilize the carbon market

and promote emissions reductions (Känzig, 2023; Koch et al., 2016). Short-term carbon

policies focus on temporary supply interventions in EUAs to stabilize or support carbon

prices, while long-term carbon policies set ambitious long-term emissions reduction targets,

signaling a stronger commitment to decarbonization.

To extract policy-relevant information from the term structure of carbon futures, we begin

with a novel model based on commodity futures pricing. Specifically, we use a five-factor

affine term structure model (ATSM) that jointly captures the dynamics of both carbon and

oil futures. This five-factor model has one common factor, two oil market-specific factors, and

two carbon market-specific factors. This model incorporates several stylized facts. First, we

introduce a common factor for the carbon and oil markets to account for price co-movements

between the two markets. The economic rationale is that when global economic expansion

stimulates real activity, pushing up both carbon and oil prices. Consequently, this common

factor serves as a proxy for global demand. Similarly to the approach of Kilian (2009),

by isolating this global demand effect, we can more accurately identify the risk of carbon

policy within the fluctuations in carbon prices. Second, inspired by Chiang et al. (2015), we

incorporate cross-market information transmission, allowing correlations between market-

specific factors within factor dynamics. This setting corresponds to the unspanned factors

highlighted in the recent literature. To ensure parsimony of the model and maintain the

identifiability of the factors (Delle Chiaie et al., 2022), we assume that the common factor

represents an exogenous shock driven by changes in global demand, conceptualized as a factor
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orthogonal to the factors specific to each market. Furthermore, we assume that the influence

of the common factor induces a parallel shift across the entire term structure, implying a

persistent effect.

The estimated results show that carbon policy factors can predict the dynamics of the

oil market, implying that market participants have priced carbon policy risks into oil prices.

In addition, our proposed model fits very well in both carbon and oil futures markets.

Comparing the model’s fit to a reduced-form specification—one that omits cross-market

correlations—highlights the critical role of the unspanned factor framework in capturing

the distinct effects of short-term and long-term carbon policies. Therefore, this framework

allows us to isolate more precise measures of the impact of carbon policy, in particular by

distinguishing between the effects of short-term and long-term carbon policies.

We perform an event study analysis and establish strong ties between carbon factors

and carbon policies of various horizons. We confirm that short-term and long-term carbon

factors serve as effective indicators of EU ETS policies of different horizons. We collect 47

policy announcements from 2013 to 2023 and classify them according to their attributes as

long-term vs. short-term contractionary vs. expansionary policies. In terms of short-term

carbon policies, contractionary policies lead to an abnormal increase of the short-term carbon

factor by 1.4 standard deviations over a one-week event window, while expansionary policies

lead to a stronger market reaction of an abnormal decrease of 1.95 standard deviations in

short-term carbon factor. Our results are consistent with Koch et al. (2016), revealing asym-

metric market responses to short-term contractionary versus expansionary policies. Weak

market confidence in the EU ETS stabilization mechanisms appears to drive this asymmetry.

Expansionary policies elicit strong market reactions, whereas contractionary price-support

policies receive limited response. On the other hand, long-term carbon policies that signal

decarbonization ambitions lead to an increase in long-term carbon factors, making them

reliable indicators of market responses to such policies.

As our key empirical evidence, which we term the “carbon policy paradox,” we document
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strikingly divergent impacts of short-term and long-term carbon policies on oil markets. Us-

ing a structural vector autoregressive (SVAR) model, we examine how these policies influence

oil quantities (oil production and net imports) and oil consumption in Europe, highlighting

their role in shaping both supply and demand sides of the oil market. A tightening of short-

term carbon policy (a positive shock of 1 standard deviation) leads to a 0.5% increase in oil

quantities and consumption within the first few months of the shock, with both returning to

equilibrium after about six months. This counterintuitive result echoes the green paradox

described by Sinn (2008, 2009), who highlights the accelerated exploitation of resources in

response to regulatory constraints. While Sinn’s original framework primarily addresses oil

producer behavior on the supply side, our findings complement this paradox by providing

demand-side evidence. The market price of carbon remaining below the social cost of carbon

partly explains this phenomenon.3 As a result, while short-term carbon policies can increase

the cost of emissions, they still fall short of fully internalizing environmental externalities,

inadvertently incentivizing increased immediate oil use, as firms seek to maximize profits and

hedge against potential stranded assets. This aligns with Lucas’s critique of policy effective-

ness, which emphasizes that policies often fail when they neglect the adaptive expectations

of market participants.

In contrast, a tightening long-term carbon policy (a positive shock of 1 standard devia-

tion) demonstrates a delayed but substantial impact, with oil quantities and consumption

declining by nearly 1% eight months after the policy takes effect. We find that long-term

carbon policies create stronger outcomes and can effectively curb oil market behavior after

a period of adjustment. Setting long-term emission reduction targets, the EU ETS provides

market participants with a credible expectation of sustained regulatory pressure on carbon

emissions. In sum, these results underscore the critical role of EU ETS policy instruments:
3The social cost of carbon quantifies the economic damage caused by an additional tonne of carbon

dioxide emissions, including effects such as health problems, loss of agricultural productivity and property
damage due to climate change. Recently, an influential study by Rennert et al. (2022) shows that this figure
can be as high as $185 per tonne , which is much higher than the carbon emission fee charged by the EU
ETS.
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while short-term carbon policies may unintentionally undermine efforts to reduce emissions,

long-term carbon policies provide credible signals that gradually reduce dependence on fossil

fuels.

Our study contributes to the growing literature that examines the impact of climate

policies, particularly carbon pricing. Several recent studies have examined the impact of EU

ETS policy announcements on macroeconomy or market dynamics.4 However, most of these

analyses rely only on spot prices as a proxy to measure the impact of policy events. Although

Känzig (2023) incorporates EUA futures to calculate carbon policy surprises, the discussion

remains focused on the price “level,” overlooking the rich information embedded in the shape

of the term structure. We advance this perspective by modeling the term structure of EUA

futures to differentiate market implication to short- and long-term carbon policies.

More substantially, our research also contributes to the empirical literature on the green

paradox. Some theoretical studies describe the possibility of a green paradox.5 Empirically,

much of the literature focuses on the impact of climate policy at the firm level.6 In contrast,

we examine the fundamentals of the oil market, which, as emphasized by Ready (2018),

provide key insights into the value of oil companies. Some studies have analyzed the impact

of climate policy on oil prices (e.g., Bjørnland et al., 2023; Känzig, 2023), but as Kilian

(2009) highlights, distinguishing between oil supply and demand effects provides a more

complete understanding of the role of carbon policy in the oil market. The most relevant

study for our work is Barnett (2023), but unlike their focus, we uncover the carbon policy

paradox within the EU ETS framework, capturing both oil supply and demand responses for

a more comprehensive view. In addition, by distinguishing between short-term and long-term

carbon policies, we reveal both unintended consequences and intended outcomes.

Finally, our research extends the literature on commodity futures pricing. Building on
4see Bjørnland et al. (2023); Fan et al. (2017); Hengge et al. (2023); Känzig (2023); Känzig and Konradt

(2023); Koch et al. (2016).
5see Caldecott et al. (2021); McGlade and Ekins (2015); Semieniuk et al. (2022); Van der Ploeg and

Rezai (2020).
6see Atanasova and Schwartz, 2019; Bogmans et al., 2024; Donadelli et al., 2021.
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extensive research using affine models for commodity derivatives,7 we propose a novel dual-

market framework for carbon and oil that incorporates the importance of cross-market in-

formation highlighted in recent literature. For example, Heath (2019) applies unspanned

macroeconomic factors to oil futures, Jacobs et al. (2022) extend this approach to electricity

markets, and Chiang et al. (2015) also highlight cross-market interactions between oil and

equity markets. By integrating these insights, our framework provides a unified perspective

on how policy signals propagate between the carbon and oil markets.

2 Background of EU ETS

2.1 EU ETS Operational Mechanism

The EU ETS is a pioneering cap-and-trade market, established in 2005 under the Kyoto

Protocol. It is the cornerstone of the EU’s policy architecture for combating climate change,

designed to reduce GHG emissions in a cost-effective manner. To date, the EU ETS is

recognized as the largest carbon market in the world, covering 27 EU countries as well as

Iceland, Liechtenstein, and Norway, for a total of 30 countries.8 It regulates around 10,000

installations in the energy sector, the manufacturing sector, and parts of the aviation industry

based in Europe. This coverage represents about 40% of EU GHG emissions.

The EU ETS operates on a cap-and-trade principle, which involves setting a limit on the

total amount of certain GHGs that can be emitted by installations covered by the scheme.

To facilitate this, these installations are allocated EUAs, each of which is equivalent to one

tonne of CO2. This cap is systematically reduced over time, in line with the EU’s ambitious

climate change targets, to ensure a gradual and consistent reduction in overall emissions.

EUAs are allocated to installations, with some given away for free based on histori-
7see Casassus and Collin-Dufresne, 2005; Chiang et al., 2015; Heath, 2019; Jacobs et al., 2022; Schwartz,

1997; Trolle and Schwartz, 2009.
8Following Brexit, the UK formally exited the EU ETS on 1 January 2021. Coinciding with its with-

drawal, the UK launched its own carbon emissions trading scheme (UK ETS).
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cal emissions and performance benchmarks, and the rest auctioned. The total number of

allowances is deliberately limited to create scarcity in the market, thereby incentivizing

installations to reduce their emissions efficiently. Installations are required to surrender al-

lowances equal to their emissions at the end of each compliance period. Those that manage

to reduce their emissions below their allowance can sell their surplus allowances, promoting

a market-based mechanism to incentivize emission reductions.

2.2 EU ETS Development History

The EU ETS is a market mechanism built on a foundation of regulatory oversight. As

a result, market participants naturally respond to the prevailing policy landscape. This

responsiveness underlines the dynamic interaction between policy developments and market

behavior, where adjustments in carbon policy can significantly influence market outcomes,

including the pricing and allocation of allowances. The evolution of the EU ETS has taken

place in several distinct phases, each characterized by targeted regulatory changes, market

responses, and environmental objectives. Figure 1 shows the evolution of carbon prices

through these operational phases.

[Insert Figure 1 here]

The Phase 1, from 2005 to 2007, served as a fundamental learning period and set the stage

for future improvements. This phase was limited to CO2 emissions from power generation

and energy-intensive industries, and allowances were distributed free of charge. Despite the

establishment of a market price for carbon and the start of trading activities, the initial lack

of accurate emissions data led to an oversupply of allowances and a collapse in carbon prices.

During the Phase 2 (2008-2012), which coincided with the Kyoto Protocol’s first com-

mitment period, the EU ETS was given concrete emission reduction targets. Drawing on

the lessons of the first phase, the cap was reduced by 6.5% from the 2005 levels, with a 10%

reduction in free allocation of allowances and the introduction of allowance auctions in some
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countries. Penalties for non-compliance were increased to €100 per tonne. This phase also

extended the scheme to nitrous oxide (N2O) emissions and included the aviation industry

from January 2012. Despite these adjustments, the 2008 financial crisis significantly reduced

carbon emissions, leading to a continued oversupply of allowances.9

The Phase 3 (2013-2020) saw significant reforms to the carbon trading framework. It

expanded the range of regulated industries and gases, significantly reduced free allocations

and moved towards a predominance of auctioned allowances, with free allocations to the

manufacturing sector falling to 30% by 2020. The power sector was required to purchase

allowances, underlining the EU’s determination to refine the carbon market for emissions

reduction.

Currently in its Phase 4 (2021-2030), the EU ETS is aligned with the ambitious goals of

the European Green Deal, which aims to achieve carbon neutrality by 2050. This phase sets

a target of at least a 55% reduction in net carbon emissions by 2030 and requires covered

sectors to reduce emissions by 43% from 2005 levels by the end of the decade. To address the

issue of surplus allowances from previous phases, the EU has introduced the Market Stability

Reserve (MSR) mechanism for enhanced control and strengthened enforcement measures.

3 Model Specification

This section presents the five-factor ATSM with a common factor and market-specific factors

for the carbon and oil markets. We then derive the closed form of the commodity futures

price and discuss the role that the factors play in the futures price. Finally, we introduce

the procedure for Kalman filter to obtain the state variable and unknown parameters.
9Bjørnland et al. (2023) also documented that the decline in EUA prices during the second phase was

influenced by the global financial crisis and the European sovereign debt crisis, which led to a reduction in
economic activity. This in turn led to the hoarding of EUAs, which increased from almost zero at the end
of 2008 to around two billion in 2013. In addition, the phenomenon can be partly attributed to companies
opting to purchase a limited number of Certified Emission Reductions (CERs) to replace EUAs to offset
their emissions.
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3.1 Affine Term Structure Model

To identify the common factor and market-specific factors in the respective markets, we build

an ATSM the five-factor affine model is given by the following risk-neutral Itô diffusion:

dXt =
(
AQ +BQXt

)
dt+ Σ dWQ

t , (1)

where Xt =
(
XCom

t , XC
s,t, X

C
l,t, X

O
s,t, X

O
l,t

)⊤ is a state variables vector and corresponds to the

common factor, short-term and long-term market-specific factors in the carbon market, and

short-term and long-term market-specific factors in the oil market, respectively. AQ is 5× 1

vector, BQ is a 5×5 matrix, Σ is a 5×5 lower triangular matrix (Σ⊤Σ is variance-covariance

matrix for five factor), and dWQ
t ∈ R5 are independent Brownian motions under risk-neutral

measure Q. The log spot price in market i can be express as an affine function of state

variables as followings:

sit = δi⊤Xt, (2)

where i ∈ {C,O} denote carbon and oil markets. δC = (δCX , 1, 0, 0, 0)
⊤ and δO = (δOX , 0, 0, 1, 0)

⊤

are the coefficient vectors in both markets. Specifically, in the case of market i, the spot

price can be expressed as the sum of a common factor and a short-term factor, that is

sit = δiXX
Com
t +X i

s,t.

Then, we follow the conventional setting of literature on term structure modeling for

interest rates and commodities, we opt the market price of risk, Λt are set as essentially

affine type (see Duffee, 2002):

Λt = λ0 + λ1Xt, (3)

where λ0 ∈ R5 and λ1 ∈ R5×R5. It means that the dynamic process of state variables under

physical measure P are also affine:

dXt =
(
AP +BPXt

)
dt+ Σ dW P

t , (4)
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where AP is 5 × 1 vector, BP is a 5 × 5 matrix, and dW P
t ∈ R5 are independent Brownian

motion under the physical measure. By the Girsanov theorem, the P- and Q-parameters are

therefore related as follows:

AP = AQ + Σλ0, (5)

BP = BQ + Σλ1. (6)

In terms of the characteristics of the state variables within our model, the common factor

is perceived as an exogenous shock arising from a change in carbon policy. This distinction

causes the common factor to be orthogonal to other market-specific factors in the system.

This independence is represented mathematically by the structure of the variance-covariance

matrix Σ⊤Σ, denoted as:

Σ⊤Σ =



σ11 0 0 0 0

0 σ22 σ23 σ24 σ25

0 σ23 σ33 σ34 σ35

0 σ24 σ34 σ44 σ45

0 σ25 σ35 σ45 σ55


, (7)

As highlighted by Bai and Wang (2014), while the orthogonality assumption between the

common factor and market-specific factors can be relaxed by applying alternative restrictions

to examine the interaction among these factors, our analysis focuses primarily on separating

the market-specific factors from the common factor. Moreover, Doz et al. (2012) shows that

the robustness of the estimates can be improved by imposing restrictions on the correlation

between the common factor and the other factors. Such setting maintains the parsimony

and clarity of the model while ensuring its identifiability (Delle Chiaie et al., 2022).
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3.2 Futures Pricing

Given the dynamic process of state variables in Equation (1), the time-t commodity futures

price with maturity date of T in market i is martingale under the risk-neutral measure given

the time-t information set Ft:

F i(t, T ) = EQ [
exp

(
siT

)∣∣Ft

]
. (8)

The log futures price is also an affine function of state variables; see Appendix A for the

derivation. Specifically, the log futures price is given by:

logF i(t, T ) = Ai(t, T,ΘQ ) + Bi(t, T,ΘQ )Xt, (9)

where Ai and Bi are functions that satisfy the initial conditions Ai(t, t,ΘQ) = 0 and

Bi(t, t,ΘQ) = δi⊤, and are expressed as follow:

Ai(t, T,ΘQ,i) =

∫ T

t

δi⊤eB
Q(T−s)AQds+

1

2

∫ T

t

δi⊤eB
Q(T−s)

Σ⊤Σ(eB
Q(T−s))⊤δids, (10)

Bi(t, T,ΘQ,i) = δi⊤eB
Q(T−t). (11)

To identify the interpretation of state variables, we refer to Chiang et al. (2015) to

restrict the parameters under Q measure. A similar approach is applied in Christensen et al.

(2011), who obtain the term structure of interest rates using the framework of Nelson and

Siegel (1987) by restricting the mean reversion matrix. This has the advantage of reasonably

dissecting the role of each state variable in the term structure. In line with this approach,

we apply a specific constraint on the BQ as follows:
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BQ =



0 0 0 0 0

0 −bQC 1 0 0

0 0 0 0 0

0 0 0 −bQO 1

0 0 0 0 0


. (12)

Consequently, the log futures price in market i is articulated as:

logF i(t, T ) = Ai(t, T,ΘQ) + δiX XCom
t + e−bQi (T−t) X i

s,t +
1− e−bQi (T−t)

bQi
X i

l,t. (13)

This equation delineates the log futures price as a function of the model’s state variables,

incorporating the common factor XCom
t and both the short-term X i

s,t and long-term X i
l,t

market-specific factors for the respective markets, modulated by the mean reversion rates

bQi . Notably, the factor loading attributed to the common factor is characterized by its

constancy across different maturities, underscoring its designation as a permanent influence

within the model. This implies that the effect exerted by the common factor is consistent,

resulting in a parallel shift across the entire term structure. Such a feature highlights the

common factor’s pivotal role in reflecting systemic changes or shocks that impact the markets

uniformly. Conversely, the behavior of the factor loadings for the first and second market-

specific factors across maturities reveals distinct temporal characteristics. Specifically, the

loading for the first market-specific factor diminishes with increasing maturity, identifying

it as a short-term factor. While the loading for the second market-specific factor escalates

with maturity, classifying it as a long-term factor.

3.3 Estimated Procedure

Given that both the common factor and market-specific factors are unobservable latent

variables within our model, coupled with the affine nature of the transition and measurement
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equations and the assumption that errors follow a Gaussian distribution, the utilization of

the Kalman filter emerges as an intuitive approach for extracting these state variables.

Firstly, we display the state-space representations of the ATSM in our model specification.

To obtain the transition density of the state variables, a first-order Euler discretization

method is used to transform the Equation (4) into this form:

Xt+∆t = AP∆t+
(
I +BP∆t

)
Xt +

√
∆tΣεt+∆t

= Φ0 + Φ1Xt + ut+∆t,

(14)

where ut+∆t ∼ N(0, Q), Q = Σ⊤Σ∆t. The measurement equation of the ATSM, correspond-

ing to Equation (9), is thus articulated as:

 logFC

logFO

 =

 AC

AO

+

 BC

BO


⊤

Xt + νt, (15)

where νt ∼ N(0, R), R = σ2
r · INC+NO

. In represents the n × n identity matrix, and NC

and NO denote the total number of available maturities for each market in the sample. It is

important to note that the noise components of both the transition and measurement equa-

tions are assumed to be independent. Subsequently, the standard Kalman filter procedure

with maximum likelihood estimation is used to extract the filtered state variables along with

the unknown parameters.

4 Data and ATSM Estimation Results

In this section we detail the data, the ATSM parameter estimation, and the estimation

results. Our primary objective is to extract insights from commodity futures prices and

to quantitatively assess the impact of carbon policies on the oil market. To ensure the

adequacy of the model, we examine its ability to capture the stylized facts observed in the

data, thereby confirming the reliability of our empirical results. We present both in-sample
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and out-of-sample fits of our model and compare its effectiveness with the reduced-form

model.

4.1 Data

We utilize daily price data for EUA futures and Brent crude oil futures from the Intercon-

tinental Exchange (ICE) in our empirical study.10 As highlighted in the background of the

EU ETS provided earlier, significant changes have been introduced since Phase 3 that have

fundamentally altered the regulatory nature of the scheme. With the expansion to a wider

range of regulated industries and gases during Phase 3, the free allocation of allowances

to regulated entities was significantly reduced. These adjustments effectively mitigated the

supply/demand imbalance that precipitated the price collapses observed after Phases 1 and

2. Consequently, our empirical investigation will focus on data from Phase 3 and the ongoing

Phase 4, covering the periods from January 2013 to December 2020 and January 2021 to

December 2023, respectively.

To take liquidity into account, we follow the contract selection approach prevalent in the

commodity derivatives literature. As noted in Trolle and Schwartz (2009), liquidity in oil

futures is predominantly concentrated in short-term contracts within a six-month horizon.

Consequently, we opt for the six closest monthly futures contracts (M1-M6). In addition, for

longer-term futures contracts, trading volume is observed primarily in quarterly contracts

and those expiring in December. Therefore, we also select two quarterly contracts (M9 and

M12). A similar pattern is observed for the EUA futures, so we select the carbon futures

contracts M1, M2, M3, M6, M9 and M12 for our study. Given the sharp decline in open

interest due to the early settlement of most contracts in the last two weeks before expiration,

we filter out contracts with less than 14 days to maturity.
10In addition to the ICE in London, the European Energy Exchange (EEX) in Leipzig also offers EUA

futures contracts with nearly identical contract specifications. However, Stefan andWellenreuther (2020) note
that the primary discovery of carbon futures prices occurs predominantly on ICE. This finding underscores
the importance of focusing on ICE data, given its leading position in price discovery within the carbon
market.

14



[Insert Figure 2 here]

Figure 2 shows the futures price series for EUA and Brent oil for both two-month

and twelve-month futures contracts, with EUA prices converted into USD using the daily

EUR/USD. These prices represent short-term and long-term perspectives within the futures

term structure. EUA futures are observed to exhibit contango characteristics, where short-

term prices are lower than long-term futures prices. This phenomenon is documented in the

literature as an inconvenience yield (see Palao and Pardo, 2021) associated with the contract

specifications of EUAs, in particular, the absence of storage costs and the fact that EUA do

not expire. The interaction between short-term and long-term futures prices for Brent oil

is comparatively more complex than for EUA futures. During most economic expansions,

demand for spot crude oil typically leads to a backwardation pattern in the term structure,

where long-term prices are lower than short-term prices. However, during certain periods,

such as 2014 to 2016 or during the COVID-19 pandemic in 2020, the oversupply in the

market leads to contango. To mitigate the market uncertainties, oil traders often increase

above-ground oil inventories as a precaution against potential shortages. This strategy is

documented as a precautionary (storage) demand (Alquist and Kilian, 2010; Kilian and Park,

2009).

4.2 Parameter Estimates

Table 1 presents the results of the estimate of the maximum likelihood parameter for the

futures of EUA and Brent oil throughout the period, including Phase 3 and the ongoing Phase

4 of the EU ETS. Standard errors are calculated using the outer product of the gradient.

Furthermore, Equation (2) includes estimates of the loadings of the common factor on the

futures prices of both markets, denoted δCX and δOX , with estimated values of 1.11 and 1.21

respectively. This common factor influences both markets to move in the same direction, as

indicated by the identical signs of these factor loadings. This supports our expectation that

the common factor reflects signals related to global real activities. During periods of global
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economic expansion, increased producer activity pushes up both carbon and oil prices. We

will provide more evidence to support this argument in section 5.

[Insert Table 1 here]

All diagonal elements of the diffusion matrix under the P measure, denoted as BP, are

statistically significant, indicating strong within-factor dynamics. Although the off-diagonal

elements are generally not statistically significant, they exhibit limited but noteworthy in-

teractions between factors. Specifically, the entries at positions (4, 3) and (5, 2) of BP, with

values of 8.598 and −2.579 respectively, suggest potential predictive relations between car-

bon and oil factors. These values imply that the long-term carbon factor positively forecasts

the short-term oil factor, while the short-term carbon factor has a negative predictive relation

with the long-term oil factor. Furthermore, the covariance matrix ΣΣ⊤ reveals a negative

correlation between the short-term carbon factor and the oil factor, as well as a positive

correlation between the long-term carbon factor and the oil factor. Together, these findings

suggest that carbon factors are integrated into oil market’s pricing mechanisms, indicating

that market participants anticipate and incorporate carbon risks within oil price dynamics.

As discussed in Section 3, the market-specific factor loadings of commodity futures prices

on the carbon and oil markets are governed by the diffusion matrix under the Q measure

BQ. Based on the estimation results in Table 1, Figure 3 provides a visual illustration of the

factor loadings across different maturities in both markets.

[Insert Figure 3 here]

In the carbon market, the short-term factor loadings remain relatively stable across

maturities, reflecting greater persistence over time. By contrast, the loadings on the long-

term factor start from zero at zero maturity, and increase with contract maturity, indicating

that this factor primarily captures the impact of longer-dated contracts. Thus, the short-

and long-term factors in the carbon market are conceptually similar to the level and slope

16



factors described by Nelson and Siegel (1987). In the oil market, the effect of the short-

term factor diminishes significantly with longer maturities, with contracts maturing in one

year exhibiting an explanatory power of approximately 0.2. Conversely, the loading on the

long-term factor increases as maturity extends. This decomposition in the oil market aligns

with previous findings by Chiang et al. (2015), providing a meaningful description of the

dynamics of short- and long-term oil prices.

4.3 Goodness of Fit

To assess pricing accuracy, we use the filtered state variables and estimated parameters to

calculate the fitted futures prices. Following the approach of Trolle and Schwartz (2009),

we measure accuracy by calculating the daily root mean squared errors (RMSEs), defined

as the difference between the fitted and market prices, normalized by the market price. The

table reports the average RMSE for the time series.

To further evaluate our model, we compare it to a reduced-form model specification. In

this specification, we assume no correlation between the factors in the carbon and oil markets,

effectively isolating the impact of the specific market factors while ignoring potential cross-

market influences. That is, we consider one common factor and two specific factors in each

of the futures markets.11 Recent studies (Heath, 2019; Jacobs et al., 2022) highlight the

importance of unspanned factors in commodity pricing. The reduced model is equivalent to

excluding the effect of the unspanned factors.

Panel A of Table 2 presents the in-sample performance of our model in capturing the

dynamics of EUA and Brent futures contracts. The estimated futures prices from both the

full and reduced models closely match actual market data, particularly for EUA futures.

This alignment can be attributed to the consistency in the carbon term structure, which

predominantly remains in contango. The relative simplicity in interactions between short-

and long-term carbon factors contrasts with the more complex dynamics observed in the
11The two-factor structure is also recommended by Gibson and Schwartz (1990), who specifically consider

the dynamics of the underlying asset and stochastic convenience yield.

17



oil market. Nevertheless, our model achieves strong fits across markets. For context, Trolle

and Schwartz (2009); Chiang et al. (2015) report RMSE values of approximately 0.39% and

0.28%, respectively, while the full model produces an RMSE of 0.32% in the oil market,

demonstrating similar precision in both the whole and the sub-sample periods.12

[Insert Table 2 here]

To assess robustness, panel B of Table 2 presents the results of the test outside the sample.

We alternately conduct an in-sample estimation in one phase and bring its parameters to

another phase for out-of-sample testing. These results indicate that our model is robust

and has no signs of overfitting. In general, the proposed model outperforms the reduced

specification. More importantly, the results also reveal the importance of the unspanned

factor. As emphasized by the parameter estimation results, the oil market has priced the

carbon risks. However, it is important to note that the primary objective of this study is

not just to develop a more general model with minimized pricing errors. Instead, the results

demonstrate that our model adequately captures the essential information conveyed by the

market, validating its application in subsequent empirical analysis.

5 Carbon Policies and Their Impacts on the Oil Market

In this section, we explore the economic implications of the affine model. First, we establish

strong links between carbon policies and our carbon factors through an event study analysis.

Then, we address the central question of this paper: What are the impacts of carbon policies

on the oil market? To this end, we construct an SVAR model to analyze how the impacts

of carbon policy are transmitted to oil supply and demand.
12Chiang et al. (2015) used a four-factor affine model with unspanned random volatility to capture the

dynamics of the oil market. However, this study also performs joint estimations of the carbon market and
the oil market. Therefore, the fitting results are still convincing.
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5.1 Event Study Analysis

The EU ETS is widely recognized as a barometer for carbon policy, with allowance prices re-

flecting the market’s response to regulatory changes and emissions reduction commitments.13

A key question is whether the carbon factors extracted by our model also capture the sen-

sitivity of the market to policy changes. To this end, we conduct an event study analysis

and aim to link carbon policy announcements to short- and long-term carbon factors derived

from the term structure of EUA futures.

The EU ETS, like the Federal Reserve, uses various policy tools to influence the term

structure. In the case of the Fed, adjustments to the federal funds rate or open market

operations affect the yield curve at different horizons. Similarly, the EU ETS uses short-

term and long-term policy mechanisms to stabilize the carbon market and encourage emission

reductions. Short-term policies, such as temporary adjustments to the supply of allowances,

are designed to stabilize or support carbon prices by addressing immediate market conditions

(Känzig, 2023). Long-term policies focus on signaling a stronger commitment to ambitious

emission reduction targets (Koch et al., 2016). Examples include the adoption of the Market

Stability Reserve (MSR) mechanism in 2015 or the EU’s commitment to Fit for 55 targets.

While such long-term policy announcements may not have an immediate direct impact on

spot market supply and demand, they tend to have a greater impact on futures prices due

to increasing hedging pressure (De Roon et al., 2000).

The sample events are primarily sourced from the European Commission Climate Ac-

tion news archive. We manually compile a list of EU ETS policy announcements.14 For

event selection, we concentrate specifically on policy announcements that introduced new

measures or adjustments, as well as updates on medium- and long-term emission reduction

targets issued by the European Commission. Any secondary information was excluded, in-
13Fan et al. (2017); Känzig (2023); Koch et al. (2016) have analyzed the impact of European carbon

policy and regulatory events on EUA prices, emphasizing the critical role of policy and regulatory shifts in
shaping allowance prices.

14https://climate.ec.europa.eu/news-your-voice/news_en.
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cluding announcements from individual EU member states and routine updates on market

conditions to maintain the focus on impactful policy changes. Our final sample consists

of 47 policy announcements spanning the period for 2013 to 2023.15 Each announcement

was classified following economic principles as having either a positive (contractionary) or

negative (expansionary) expected impact on carbon market prices. It is noteworthy that all

long-term policies are classified as contractionary carbon policies, as they primarily empha-

size carbon reduction targets. Consequently, these policies are classified exclusively in the

positive impact category.

In our event study methodology, we employ a mean-adjusted model. Given that the

EU ETS is a relatively young market with frequent policy announcements, relying solely on

raw data could introduce bias in estimating normal mean returns, particularly due to the

overlapping of regulatory event dates. To address this, we trim the data by excluding the

top and bottom 5% of factor returns within the estimation window, thereby reducing the

impact of extreme values and obtaining a more stable mean return. Furthermore, since the

carbon market lacks a recognized reduced market model in the literature, we adopted this

simple mean-adjusted model as a pragmatic choice. Despite its simplicity, this approach still

effectively captures the impact of events and performs comparably to more complex models

(Brown and Warner, 1985).

Specifically, let the date of the policy event be defined as t = 0. For each event day (day

0), we estimate the following regression over the 60 trading days (around quarter a year)

leading up to the event date:

∆Xt = α + εt, t = −60, · · · ,−2, (16)

where α is estimated by the mean after removing the upper and lower 5% quantiles of returns.

We then calculate the cumulative abnormal factor (CAF) over the event window between
15A detailed description of these policy announcements is provided in Appendix B.
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date-t1 and date-t2:

CAFT =

t2∑
t=−t1

εt. (17)

Table 3 presents the results of our event study analysis, examining the short-term and

long-term carbon factor responses to EU ETS policy announcements. We calculate the CAF

for each event as specified in Equation (17), averaging the results by event category. The

table summarizes the average CAFs for two event windows: [-1,0], i.e., t1 is set to −1 and t2

is set to 0, covering the day before to the day of the announcement, and [−2,2] (i.e., t1 is set

to −2 and t2 is set to 2), capturing the week (5-day) effect surrounding the announcement

date. To facilitate comparison, we standardize the original factors.

[Insert Table 3 here]

In Panel A of Table 3, the short-term carbon factor exhibits significant responses to

both contractionary and expansionary announcements, aligning with expectations. Con-

tractionary policy announcements generate a relatively moderate response of approximately

0.27 standard deviations on the announcement day, culminating in a cumulative increase

of nearly 1.4 standard deviations over the entire event window. In contrast, expansionary

policy announcements trigger a more immediate and pronounced market reaction, with a

decline of 1.55 standard deviations on the announcement day and a total drop of 1.95 stan-

dard deviations over the week. In particular, on 16 April 2013, the European Parliament’s

rejection of the back-loading proposal led to a roughly 40% decline in EUA prices.16 Over-

all, these results corroborate findings from Koch et al. (2016), highlighting fragile market

confidence in EU ETS stabilization policies. Expansionary policies elicit stronger reactions,

while contractionary policies show limited success in sustaining prices.

On the other hand, Koch et al. (2016) also suggest that long-term policies tend to have

limited or even counterintuitive effects on short-term prices. As noted by Hicks (1975);
16Following Phase 2 of the EU ETS, a surplus of EUAs accumulated due to the economic downturn, which

reduced emissions more than anticipated, resulting in lower-than-expected demand for allowances. The
back-loading proposal, introduced by the European Commission, aimed to temporarily reduce oversupply
and stabilize EUA prices by postponing the auctioning of a portion of allowances.
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Keynes (2024), futures prices often carry a risk premium to account for higher hedging pres-

sures, while long-term policies primarily shape the future carbon policy environment rather

than immediate supply-demand conditions. To further explore this, we examine the impact

of long-term policies on long-term carbon factors. Panel B of Table 3 shows that follow-

ing long-term policy announcements, the long-term carbon factor rises by approximately

0.3 standard deviations on the announcement day, with a cumulative increase nearing 0.5

standard deviations over the week. This positive response aligns with the anticipated effects

of long-term carbon policy goals, suggesting that markets internalize these announcements

as indicative of a more constrained future supply environment. Although the results lack

statistical significance, the directional movement of the long-term factor still underscores the

signaling power of long-term policies in shaping future carbon market dynamics.17

These results underscore the utility of short-term and long-term carbon factors as proxies

for the impacts of short-term and long-term carbon policies, respectively, in subsequent

empirical analyses. Distinguishing between these policy horizons is critical for interpreting

their differential effects on market behavior and understanding how policy measures influence

carbon market dynamics across time horizons.

5.2 What Are the Impacts of Carbon Policies on the Oil Market?

Through the model estimation, we find that oil market have priced both short-term and

long-term carbon factors. As shown in the event study analysis, the short-term carbon

factor is sensitive to the policy exposure embedded in the EU ETS through short-term

supply interventions. Conversely, the long-term carbon factor responds to the EU ETS’s

long-term planning, encompassing broader ambitions to gradually reduce emissions.

As emphasized in Hamilton (2003) and Kilian (2009), changes in oil prices are frequently

attributed to different sources. The consensus in the literature often categorizes them as
17An event study of short-term factors in response to long-term policies found an impact less than half

as strong as that on long-term factors, consistent with findings from Koch et al. (2016).
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supply-side or demand-side shocks.18 In general, carbon policies can influence the oil market

through various channels. For instance, carbon pricing or emission caps can raise production

costs for oil companies, potentially reducing oil supply as firms adjust output to maintain

profitability. On the demand side, stricter carbon regulations might lead industries and

consumers to substitute oil with cleaner energy sources, thereby decreasing demand. By

distinguishing between short-term and long-term effects, we aim to gain a more nuanced

understanding of how carbon policies impact the oil market over different time horizons.

To shed light on this relation, we utilize SVAR model to analyze the transmission channels

through which carbon policy risks affect the oil market. Specifically, consider a standard

VAR(p) model:

yt = b+

p∑
i=1

Biyt−i + ut, (18)

where yt is the vector of endogenous variable; b is the intercept vector; Bi are the coefficient

matrices for lagged variables; ut is a vector of reduce-form error with covariance matrix

Var(ut) = Σu.

The reduced-form errors can be expressed as a linear combination of structural shocks εt

as follows:

ut = Sεt, Var(εt) = Σε. (19)

where S is the matrix that maps reduced-form residuals to structural shocks, and Σε is the

covariance matrix of the structural shocks. The structural shocks are identified by solving

S from the condition Σu = SΣεS
⊤. In this study, we use the Cholesky decomposition

of the reduced-form residuals’ covariance matrix to identify the structural shocks. This

is appropriate given the focus on exploring the impact of carbon policy shocks on the oil

market.19

18A comprehensive discussion can be referred to Kilian and Zhou (2023).
19Alternative identification schemes, such as sign restrictions or narrative sign restrictions, are discussed

in Baumeister and Peersman (2013); Kilian and Murphy (2012); Zhou (2020).

23



We specify two SVAR models to assess the impact of carbon policies over different time

horizons. In both models, we assume that EU ETS policy decisions are primarily driven

by internal considerations, such as the supply of EUAs and long-term emission reduction

targets, and are unaffected by other variables in the short run. Based on this assumption,

the carbon factor is placed first in the vector of endogenous variables yt within the Cholesky

identification scheme, reflecting its exogeneity in the short-run dynamics of the model. For

the oil market variables, we include oil quantity and oil consumption in the European region

as proxies for oil supply and demand, respectively. Here, oil quantity is defined as the sum of

oil production and net imports, while oil consumption is defined as the sum of direct use and

refinery intake. It is worth noting that Europe’s relatively limited oil production capacity,

using oil quantity rather than oil production alone offers a more comprehensive view of the

oil supply flow in Europe.

Data on oil production, net imports, direct use, and refinery intake are sourced from

the International Energy Forum (IEF), providing a comprehensive overview of the dynamics

of the European oil market and allowing the construction of robust oil supply and demand

variables.20 The dataset comprises country-level data on oil-related variables, which we ag-

gregate to represent the combined totals for countries participating in the EU ETS, including

the UK. Although the UK exited the European Union in 2020, it remained part of the EU

ETS until 2021 and subsequently launched the UK ETS, continuously monitored by carbon

policy.21

Figure 4 shows the impulse response functions (IRFs) of oil quantity and oil consumption

for shocks to short-term and long-term carbon policy factors, based on VAR estimates and

a recursive identification structure. Panel A shows the IRFs in response for a shock to the

short-term carbon factor, while Panel B shows the IRFs in response for a shock to the long-

term carbon factor. The solid lines represent point estimates, and the dark and light shaded
20Available via the Joint Organizations Data Initiative (JODI) at https://www.jodidata.org/oil/

database/data-downloads.aspx.
21The UK’s inclusion is further justified by its status as Europe’s second-largest oil producer.
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areas indicate 68 and 90 percent confidence intervals, constructed from 10,000 bootstrap

replications. All shocks are normalized to 1 unit standard deviation.

[Insert Figure 4 here]

The results from the cumulative impulse response analysis indicate distinct reactions to

short-term and long-term carbon policy shocks. Specifically, a tightening of short-term car-

bon policies initially leads to a marked increase in oil quantities and oil consumption. Oil

quantities peak after about five months and rise by about 0.5%. Oil consumption responds

even more strongly. It rises by about 0.5% in the early stages of the shock. In addition, both

quickly returned to equilibrium after about half a year. This short-term reaction is coun-

terintuitive, as tightening policies are intended to curb fossil fuel use but instead appear to

drive a temporary increase. In contrast, a long-term tightening carbon policy shock shows

minimal effect on oil quantities and consumption in the initial period, with significant de-

clines beginning approximately 8 months after the policy takes effect. This delayed response

accumulates to nearly a 1% reduction in both oil quantities and consumption, marking a

statistically and economically significant impact. Overall, short-term carbon policy shocks

seem to drive increases in oil quantities and consumption, while long-term policies lead to

opposite effects, with the long-term response being notably stronger.

Discussion. From these observations, we can infer several economic insights. First, the

effect of short-term carbon policies appears paradoxical, suggesting a newly uncovered Car-

bon Policy Paradox within the EU ETS framework. This result echoes the Green Paradox

proposed by Sinn (2008, 2009), which primarily describes a scenario where anticipated future

carbon policies lead to accelerated resource extraction by fossil fuel producers, as they seek to

maximize profits before stricter regulations take effect. However, our findings show that this

paradox extends beyond the supply side to encompass demand as well: rather than curbing

fossil fuel use, short-term tightening policies intended to raise carbon prices are associated

empirically with increased oil production by producers and heightened oil consumption by

firms in the short run, contrary to policy goals aimed at emission reduction.
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This unintended consequence may be due to the current market price of carbon being

below the social cost of carbon. As Pedersen (2023) has emphasized, when the carbon price

is lower than its true social cost, the efficacy of carbon policies becomes limited. Although

short-term policies increase emission costs, it fails to fully internalize the environmental

externality, thereby incentivizing increased current oil use rather than reduction to maximize

profits and avoid potential stranded assets.

Interestingly, the data also reflect that long-term carbon policies are more effective in

aligning oil market behaviors with decarbonization goals. Long-term policies trigger a con-

traction in both oil quantities and consumption, albeit with a temporal lag. This delayed

response underscores the nature of long-term policies, which often influence future market ex-

pectations and gradually increase the economic pressure on oil consumption and production

through sustained carbon costs. Here, long-term policies implicitly reflect more ambitious

emissions reduction targets, which, unlike short-term interventions, succeed in motivating

stakeholders to reduce oil reliance over time. Thus, while short-term policy interventions

exhibit limited efficacy, the long-term factor demonstrates that the EU ETS can enforce

meaningful decarbonization when policies are sustained and future-oriented.

In conclusion, our analysis suggests that short-term carbon policies may not only be

ineffective but may also counteract policy objectives by inadvertently encouraging increased

oil production and consumption in the near term. This unintended outcome aligns with

Lucas’s critique of policy effectiveness, which emphasizes that policies often fall short when

they fail to account for the adaptive expectations of market participants. This ineffectiveness

may stem from the carbon price falling below the social cost of carbon, reducing the policy’s

deterrent effect on fossil fuel consumption. Additionally, as discussed in the event study

analysis, market participants exhibit skepticism regarding the stability and reliability of

short-term policies, which may further exacerbate this ineffectiveness that counteract the

intended impact of carbon policy.

By contrast, long-term carbon policies exhibit greater alignment with decarbonization
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objectives. These policies provide a credible, sustained signal that encourages gradual shifts

toward reduced fossil fuel dependence, supporting emissions reduction targets. Our study

highlights that treating short- and long-term carbon factors as proxies for distinct policy

horizons helps clarify the nuanced effects of carbon policies, revealing that long-term com-

mitments are particularly essential in aligning market behaviors with environmental goals.

6 Conclusions

This study analyzes the interaction between carbon policies and oil markets, with a focus

on how short-term and long-term carbon policies influence oil market dynamics in distinct

ways. To this end, we construct an affine term structure model of carbon and oil futures that

includes five factors: a common factor influencing both markets, as well as short-term and

long-term market-specific factors unique to each market. The model demonstrates robust

fitting capabilities within futures markets and captures essential market characteristics, such

as the impact of business cycles and cross-market information transmission.

We interpret the short-term and long-term carbon factors as indicators of the EU ETS

policy at different time horizons. Our findings reveal that short-term carbon policy shocks

often lead to counterproductive effects, increasing oil quantities and consumption rather than

curbing them. In contrast, long-term carbon policies demonstrate a more effective alignment

with decarbonization goals, as they gradually lead to reductions in both oil quantities and

consumption. Although these long-term policies take time to produce measurable effects,

they signal a credible and sustained commitment to emissions reduction, encouraging the

market to adjust behavior toward reduced fossil fuel dependence. By distinguishing between

these policy horizons, our analysis sheds light on the complex impacts of carbon policies on

the oil market and underscores the need for stable, long-term policy frameworks to foster

meaningful reductions in fossil fuel use.

In summary, this study contributes to the literature on carbon and energy market in-
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terdependence by differentiating the impacts of short-term and long-term carbon policies,

offering valuable insights for policymakers. Notably, the market’s response suggests concerns

about oil assets becoming stranded, highlighting an area for further policy consideration. Ad-

dressing the transition strategies for oil producers, promoting cleaner energy development,

and supporting advancements in green technology are crucial directions for policymakers to

explore in guiding the energy transition effectively.
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Table 1: The parameter estimates.

This table shows the estimated parameters for the ATSM model, including both common and
market-specific factors, using the Kalman filter with maximum likelihood estimation. XCom

t

is the common factor, XC
s,t and XC

l,t are the short and long term carbon factors, and XO
s,t and

XO
l,t are the short and long term oil factors. Standard deviations are given in parentheses. The

sample period is from January 2013 to December 2023. Statistical significance is indicated
by ***, ** and * for the 1%, 5% and 10% levels respectively.

Panel A. P-Dynamics
AP BP

XCom
t

0.5486
(1.3529)

-0.181***
(0.041) 0 0 0 0

XC
s,t

-0.7876
(3.8805) 0 1.913***

(0.190)
11.400
(9.986)

-6.011
(7.478)

17.097***
(2.957)

XC
l,t

-0.1594
(0.7176) 0 -0.703

(0.485)
-3.568***
(1.051)

1.967
(2.698)

-6.103
(4.665)

XO
s,t

-2.6567
(7.0573) 0 0.875

(0.713)
8.598***
(0.466)

-4.198***
(2.073)

8.835
(8.222)

XO
l,t

-2.6271
(2.5278) 0 -2.579***

(0.429)
-10.502
(11.680)

6.3717
(9.249)

-21.663***
(8.304)

Panel B. Q-Dynamics
AQ BQ

XCom
t

3.094***
(0.314) 0 0 0 0 0

XC
s,t

-4.758***
(1.454) 0 -0.008

(0.006) 1 0 0

XC
l,t

-0.020
(0.031) 0 0 0 0 0

XO
s,t

-2.262***
(0.343) 0 0 0 -1.338***

(0.034) 1

XO
l,t

-5.071***
(0.236) 0 0 0 0 0

Panel C. Variance-Covariance Matrix ΣΣ⊤(%)

XCom
t XC

s,t XC
l,t XO

s,t XO
l,t

XCom
t

3.483**
(1.506)

XC
s,t 0 22.357**

(10.975)

XC
l,t 0 0.025

(0.078)
0.000
(0.001)

XO
s,t 0 -1.542

(6.618)
0.036
(0.047)

9.857
(5.445)

XO
l,t 0 -3.536

(2.759)
0.006
(0.020)

3.899
(1.214)

2.126***
(0.445)
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Table 2: The model fit.

This table presents the model fit for the ATSM, which includes both common and market-specific factors for EUA (Carbon) and
Brent oil (Oil) futures. The table is divided into two panels: Panel A presents in-sample performance, while Panel B reports
out-of-sample (OOS) performance. In out-of-sample, we estimate the parameters in-sample (IS) and substitute the estimated
parameters into the out-of-sample (OOS) data to calculate the average RMSE. Both measured by mean daily RMSEs in basis
points (b.p.). M1 represents the reduced model, whereas M2 denotes the full specification. Each panel shows results across
the entire sample period (2013–2023) and two distinct phases: Phase 3 (2013–2020) and Phase 4 (2021–2023).

Panel A. In-Sample

Whole Phase 3 Phase 4

M1 M2 M1 M2 M1 M2

Carbon 7.737 7.644 7.921 7.846 7.227 7.083
Oil 32.690 32.680 35.456 35.438 23.840 23.858
Total 25.323 25.303 27.409 27.386 18.695 18.685

Panel B. Out-of-Sample

Phase 3 (IS) Phase 4 (OOS) Phase 3 (OOS) Phase 4 (IS)

M1 M2 M1 M2 M1 M2 M1 M2

Carbon 7.953 7.945 10.071 8.771 9.118 8.667 6.934 6.870
Oil 35.424 35.367 24.648 24.474 52.302 51.980 20.579 20.546
Total 27.389 27.345 19.822 19.432 40.151 39.867 16.258 16.222
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Table 3: The event study analysis.

This table presents the cumulative abnormal returns of short- and long-term carbon factors
in response to EU ETS policy announcements. We calculate the CAR for each event based
on all the event combinations listed in Table B1 using Equation (17). Then, we average the
CARs for all events in the same category. The column 1 shows results for the [−1,0] window
and the column 2 shows cumulative return for the [−2,2] window, which spans from three
days before to three days after the announcement. Panel A reports the cumulative abnormal
returns for the short-term carbon factor, separated by positive and negative events. Panel
B presents the cumulative abnormal returns for the long-term carbon factor. Statistical
significance is indicated by ***, **, and * for the 1%, 5%, and 10% levels, respectively.

[-1,0] [-2:2]

Panel A. Short-term carbon factor

Positive 0.277 1.368*
Negative -1.551* -1.950**

Panel B. Long-term carbon factor

Positive 0.306 0.481
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Figure 1: The EUA spot price. This figure shows the time series of EUA spot prices, spanning
across various phases of the EU ETS: Phase 1 (2005–2007), Phase 2 (2008–2012), Phase 3
(2013–2020), and the initial years of Phase 4 (2021–2023).
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Figure 2: EUA and Brent oil futures. This figure shows the time series of commodity futures
prices in the short term (2M) and the long term (12M). The top panel shows EUA futures
and the bottom panel shows Brent oil futures. The data period covers different phases of
the EU ETS: Phase 1 (2005-2007), Phase 2 (2008-2012), Phase 3 (2013-2020) and the first
years of Phase 4 (2021-2023).
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(a) Factor loadings of carbon futures (b) Factor loadings of oil futures

Figure 3: The factor loadings. This figure shows the factor loadings across various futures
expiry dates within the pricing formula. The left panel illustrates the factor loadings for
the common factor, short-term carbon factor, and long-term carbon factor in the carbon
futures pricing model. The right panel presents the factor loadings for the common factor,
short-term oil factor, and long-term oil factor in the oil futures pricing model.
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(a) Impacts of short-term carbon factor shocks

(b) Impacts of long-term carbon factor shocks

Figure 4: Results of impulse response function. This figure presents the impulse response
functions (IRFs) of oil quantity and oil consumption in response to shocks from short-term
and long-term carbon policy factors. The top panel illustrates the IRFs following a shock to
the short-term carbon factor, while the bottom panel shows the IRFs following a shock to the
long-term carbon factor. Solid lines represent point estimates, with dark and light shaded
areas indicating 68% and 90% confidence intervals, respectively, based on 10,000 bootstrap
replications. All shocks are standardized to a 1 standard deviation.
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Appendix A Futures Pricing

To derive the pricing formula for commodity futures, we first make some preparations for

the dynamic process of Xt under a risk-neutral measure. By Itô’s lemma, we have the

closed-form solution to Equation (1), that is:

XT = eB
Q(T−t)Xt +

∫ T

t

eB
Q(T−s)AQds+

∫ T

t

eB
Q(T−s)ΣdWQ

s . (A1)

We then calculate the conditional mean and variance of state variables as follow:

EQ [XT |Ft] = eB
Q(T−t)Xt +

∫ T

t

eB
Q(T−s)AQds; (A2)

VarQ [XT |Ft] =

∫ T

t

eB
Q(T−s)ΣΣ′

(
eB

Q(T−s)
)′
ds (A3)

Therefore, we recall Equation (8), the fundamental of the futures price, which indicates that

the futures price is a martingale under a risk-neutral measure:

F (t, T ) = EQ [esT |Ft]

= EQ
[
eδ

i′XT

∣∣∣Ft

]
= exp

(
δi

′EQ [XT |Ft] +
1

2
δi

′
VarQ [XT |Ft] δ

)
= exp

(
Ai(t, T,ΘQ) + Bi(t, T,ΘQ)Xt

)
(A4)
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Appendix B Regulatory Events

Table B1: The regulatory events.

Date Event Term Impact

2013/2/28 Free allocation of 2013 aviation allowances postponed short positive
2013/3/25 Auctions of aviation allowances not to resume before June short positive
2013/3/27 Commission moves forward on climate and energy towards 2030 long positive
2013/4/16 Commission reacts to European Parliament back-loading vote The European Parliament today voted against

the Commission’s back-loading proposal for the auctioning of allowances in phase 3 of the EU ETS
short negative

2013/12/18 Commission gives green light for a first set of Member States to allocate allowances for calendar year 2013 short negative
2013/12/19 EU Climate Change Committee meets on 8 January 2014 to decide on back-loading details short positive
2014/1/8 EU Climate Change Committee agrees back-loading short positive
2014/1/22 Commission sets our 40% target by 2030, LRF increase to 2.2% from 2021 onwards and MSR long positive
2014/2/5 Parliament adopts resolution on 2030 framework long positive
2014/2/27 Back-loading: 2014 auction volume reduced by 400 million allowances short positive
2014/3/14 Commission approves first batch of international credit entitlement tables short negative
2014/3/21 Council conclusions on 2030 framework long positive
2014/4/4 Update on Commission approval of international credit entitlement tables short negative
2014/4/14 Commission approves four more international credit entitlement tables short negative
2014/4/23 Commission approves final international credit entitlement tables short negative
2014/6/4 Auctioning of aviation allowances to restart in September short negative
2014/7/4 Commission publishes first status update for New Entrants’ Reserve (NER) and impact of cessation rules short positive
2014/10/9 2015 auction calendars for general and for aviation allowances published short positive
2014/10/27 European Commission adopts the carbon leakage list for the period 2015-2019 short positive
2014/11/3 EU Climate Action and Energy Commissioner Miguel Arias Cañete: ”The science is clear. The time to act is

now”
long positive

2015/7/15 Revised emissions trading system will help EU deliver on climate goals long positive
2016/6/23 Commission to modify cross-sectoral correction factor for 2018 to 2020 long positive
2017/1/24 Commission adopts Decision to implement Court ruling on the cross-sectoral correction factor in the EU Emis-

sions Trading System
long positive

2018/1/15 Commission publishes status update for New Entrants’ Reserve short positive
2018/5/7 2018 auction calendars for aviation allowances published short negative
2018/5/8 Commission Notice on the preliminary Carbon Leakage List for the EU Emissions Trading System for Phase 4

(2021-2030)
long positive

2018/5/14 Member States’ emission reduction targets for 2021 to 2030 adopted long positive
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Table B1 – continued from previous page

Date Event Term Impact

2018/5/15 ETS Market Stability Reserve will start by reducing auction volume by almost 265 million allowances over the
first 8 months of 2019

long positive

2018/9/12 Draft amendment to ETS Auctioning Regulation available for stakeholder feedback: renewed opt-out platform
for Germany and arrangements for auctioning of 50 million allowa

short negative

2018/10/30 Emissions Trading: Commission adopts amendment to ETS Auctioning Regulation short negative
2018/12/7 2019 auction calendars of the common auction platform published short positive
2019/5/15 ETS Market Stability Reserve to reduce auction volume by almost 400 million allowances between September

2019 and August 2020
short positive

2019/7/11 2020 and revised 2019 auction calendars of the common auction platform published short positive
2020/5/8 ETS Market Stability Reserve to reduce auction volume by over 330 million allowances between September 2020

and August 2021
short positive

2020/7/1 2020 revised auction calendars published short positive
2020/11/17 Start of phase 4 of the EU ETS in 2021: adoption of the cap and start of the auctions long positive
2020/12/11 Further information on the start of phase 4 of the EU ETS in 2021: emission allowances to be issued for aircraft

operators and the Market Stability Reserve
short positive

2021/5/12 ETS Market Stability Reserve to reduce auction volume by over 378 million allowances between September 2021
and August 2022

short positive

2021/6/29 Commission publishes the national allocation tables of Member States for EU ETS stationary installations
eligible to receive free allocation in the period 2021-2025

short negative

2022/2/16 Revised 2022 auction calendar for general allowances published short negative
2022/5/12 ETS MSR to reduce auction volume by over 347 milion allowances between Sep. 2022 and Aug 2023 short positive
2023/5/15 ETS MSR to reduce auction volume by over 272 milion allowances between Sep. 2023 and Aug 2024 short positive
2023/7/28 Adoption of the Commoission decision on the Union-wide quantity of allowances for 2024 short positive
2023/10/25 Commission adopts new ETS Union Registry Regulation for Fit for 55 long positive
2023/10/31 Adoption of the Commission Decision on the total quantity of allowances to be allocated in respect of aircraft

operators in the EU ETS 2024
short positive

2023/10/31 Implementation of EU ETS for shipping makes progress long positive
2023/11/16 Notice of provisional EU ETS 2024 auction volume of general and aviation allowance
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